Modeling symptom progression to identify informative subjects for a new Huntington's disease clinical trial is problematic since time to diagnosis, a key covariate, can be heavily censored. Imputation is an appealing strategy where censored covariates are replaced with their conditional means, but existing methods saw over 200% bias under heavy censoring. Calculating these conditional means well requires estimating and then integrating over the survival function of the censored covariate from the censored value to infinity. To flexibly estimate the survival function, existing methods use the semiparametric Cox model with Breslow's estimator. Then, for integration, the trapezoidal rule is used, but the trapezoidal rule is not designed for improper integrals and leads to bias. We propose calculating the conditional mean with adaptive quadrature instead, which can handle the improper integral. Yet, even with adaptive quadrature, the integrand (the survival function) is undefined beyond the observed data, so we identify the "Weibull extension" as the best method to extrapolate and then integrate. In simulation studies, we show that replacing the trapezoidal rule with adaptive quadrature and adopting the Weibull extension corrects the bias seen with existing methods. We further show how imputing with corrected conditional means helps to prioritize patients for future clinical trials.
翻译:为亨廷顿新的疾病临床试验确定信息性主题而进行模型化症状进展是困难的,因为时间到诊断时,一个关键的共变体可以大量检查。光化是一种有吸引力的战略,即受审查的共变体被有条件的手段取代,但现有方法在严格的审查下发现有超过200%的偏差。这些有条件的症状要求从受审查的共变体从受审查的价值到无限值进行估计,然后整合。为了灵活地估计生存功能,现有方法使用与布雷斯洛的估测器的半对称Cox模型。然后,为了整合,采用捕捉性分裂规则,但捕捉性分化规则不是针对不适当的整体,而是针对偏差。我们建议用适应性二次二次曲线来计算有条件的平均值,这可以处理不适当的整体。然而,即使有适应性二次曲线,“生存功能”在观察的数据之外也没有被定义,因此我们用“Weibull 扩展” (Weibull 扩展) 来确定“ ” 与布雷斯洛的估测仪的最佳方法,然后加以整合。在模拟研究中,我们用“捕捉摸” 规则来显示“roadizaldealdealalalal rodudeal latitional rodudeal view” 方法来进一步修正。我们用“我们用“s pres” viewdaltime” view view view view view view views to violdaldaldal violdaltaldaldaldaltitionaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald” 。</s>