The article is concerned with the problem of multi-step financial time series forecasting of Foreign Exchange (FX) rates. To address this problem, we introduce a regression network termed RegPred Net. The exchange rate to forecast is treated as a stochastic process. It is assumed to follow a generalization of Brownian motion and the mean-reverting process referred to as the generalized Ornstein-Uhlenbeck (OU) process, with time-dependent coefficients. Using past observed values of the input time series, these coefficients can be regressed online by the cells of the first half of the network (Reg). The regressed coefficients depend only on - but are very sensitive to - a small number of hyperparameters required to be set by a global optimization procedure for which, Bayesian optimization is an adequate heuristic. Thanks to its multi-layered architecture, the second half of the regression network (Pred) can project time-dependent values for the OU process coefficients and generate realistic trajectories of the time series. Predictions can be easily derived in the form of expected values estimated by averaging values obtained by Monte Carlo simulation. The forecasting accuracy on a 100 days horizon is evaluated for several of the most important FX rates such as EUR/USD, EUR/CNY, and EUR/GBP. Our experimental results show that the RegPred Net significantly outperforms ARMA, ARIMA, LSTMs, and Autoencoder-LSTM models in terms of metrics measuring the absolute error (RMSE) and correlation between predicted and actual values (Pearson R, R-squared, MDA). Compared to black-box deep learning models such as LSTM, RegPred Net has better interpretability, simpler structure, and fewer parameters.
翻译:文章所关注的是对外汇汇率进行多步金融时间序列预测的问题。 为了解决这个问题, 我们引入了一个名为 RegPred Net 的回归网络。 预测的汇率被视为一个随机过程。 假设它遵循了布朗运动的概括化, 以及被称为泛泛Ornstein- Uhlenbeck (OU) 过程的中位反转过程。 利用输入时间序列的以往观察值, 这些系数可以被网络上半部的细胞( Reg) 在网上退缩。 递减系数仅取决于 - 但非常敏感于 - 需要通过全球优化程序设定的少量超参数。 巴伊斯优化是一个充分的超常量过程。 由于它的多层结构, 回归网络的第二半( Pred) 能够预测OF进程参数的根据时间序列的测算时间值, 准确度( RBER- RMTM ) 的绝对值, 预估值以预估的预估值( RGB- NUR ) 和 IMA 的精确度( IMA) 的测算, 等重要地平流值的预估值, IMO- RB- RB- RB- RB- RB- RB- RL- RL- RL- RL- mal- mal- mal- mal- mal- mal- mass 的测值 和 的测算)。