Convolutional neural networks utilize a hierarchy of neural network layers. The statistical aspects of information concentration in successive layers can bring an insight into the feature abstraction process. We analyze the saliency maps of these layers from the perspective of semiotics, also known as the study of signs and sign-using behavior. In computational semiotics, this aggregation operation (known as superization) is accompanied by a decrease of spatial entropy: signs are aggregated into supersign. Using spatial entropy, we compute the information content of the saliency maps and study the superization processes which take place between successive layers of the network. In our experiments, we visualize the superization process and show how the obtained knowledge can be used to explain the neural decision model. In addition, we attempt to optimize the architecture of the neural model employing a semiotic greedy technique. To the extent of our knowledge, this is the first application of computational semiotics in the analysis and interpretation of deep neural networks.
翻译:进化神经网络使用神经网络层的等级。 连续层信息集中的统计方面可以使人们深入了解特征抽象过程。 我们从半科学的角度分析这些层的突出地图, 也称为符号和符号使用行为研究。 在计算半科学中, 集成操作( 称为超级化) 伴随着空间元素的减少: 符号被聚合成超级标志。 使用空间元素, 我们计算突出的地图的信息内容, 并研究网络连续层之间的超级化过程。 在我们的实验中, 我们想象超化过程, 并展示如何利用获得的知识来解释神经决定模型。 此外, 我们试图利用一种微贪婪技术优化神经模型的结构。 根据我们的知识, 这是在深神经网络的分析和解释中首次应用计算半科学。