As Metaverse emerges as the next-generation Internet paradigm, the ability to efficiently generate content is paramount. AI-Generated Content (AIGC) offers a promising solution to this challenge. However, the training and deployment of large AI models necessitate significant resources. To address this issue, we introduce an AIGC-as-a-Service (AaaS) architecture, which deploys AIGC models in wireless edge networks, ensuring ubiquitous access to AIGC services for Metaverse users. Nonetheless, a key aspect of providing personalized user experiences requires the careful selection of AIGC service providers (ASPs) capable of effectively executing user tasks. This selection process is complicated by environmental uncertainty and variability, a challenge not yet addressed well in existing literature. Therefore, we first propose a diffusion model-based AI-generated optimal decision (AGOD) algorithm, which can generate the optimal ASP selection decisions. We then apply AGOD to deep reinforcement learning (DRL), resulting in the Deep Diffusion Soft Actor-Critic (D2SAC) algorithm, which achieves efficient and effective ASP selection. Our comprehensive experiments demonstrate that D2SAC outperforms seven leading DRL algorithms. Furthermore, the proposed AGOD algorithm has the potential for extension to various optimization problems in wireless networks, positioning it a promising approach for the future research on AIGC-driven services in Metaverse. The implementation of our proposed method is available at: https://github.com/Lizonghang/AGOD.


翻译:随着元宇宙成为下一代互联网范例,高效生成内容的能力至关重要。生成式人工智能(AIGC)为解决这一难题提供了有前途的解决方案。然而,训练和部署大型 AI 模型需要大量资源。为解决这个问题,我们引入了一个 AIGC-作为-服务(AaaS)架构,将 AIGC 模型部署在无线边缘网络中,确保元宇宙用户对 AIGC 服务的普遍访问。尽管如此,提供个性化用户体验的关键方面需要精选能够有效执行用户任务的 AIGC 服务提供商(ASP)。环境不确定性和变量增加了这个选择过程的复杂性,这是现有文献尚未很好解决的挑战。因此,我们首先提出了一个基于扩散模型的 AI 生成最优决策(AGOD)算法,可以生成最优的 ASP 选择决策。然后将 AGOD 应用于深度强化学习(DRL),得到深度扩散软演员–临界(D2SAC)算法,它实现了高效和有效的 ASP 选择。我们广泛的实验表明,D2SAC 能够胜过七个领先的 DRL 算法。此外,所提出的 AGOD 算法具有将如此优化问题扩展至无线网络的潜力,这使其成为未来研究元宇宙驱动服务的有前途的方法之一。我们提出的方法的实现代码可在以下地址获取:https://github.com/Lizonghang/AGOD。

1
下载
关闭预览

相关内容

人工智能生成内容
专知会员服务
59+阅读 · 2021年6月1日
深度神经网络模型压缩与加速综述
专知会员服务
129+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
OpenAI官方发布:强化学习中的关键论文
专知
14+阅读 · 2018年12月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
18+阅读 · 2020年10月9日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
专知会员服务
59+阅读 · 2021年6月1日
深度神经网络模型压缩与加速综述
专知会员服务
129+阅读 · 2019年10月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员