We investigate the knowledge of object affordances in pre-trained language models (LMs) and pre-trained Vision-Language models (VLMs). Transformers-based large pre-trained language models (PTLM) learn contextual representation from massive amounts of unlabeled text and are shown to perform impressively in downstream NLU tasks. In parallel, a growing body of literature shows that PTLMs fail inconsistently and non-intuitively, showing a lack of reasoning and grounding. To take a first step toward quantifying the effect of grounding (or lack thereof), we curate a novel and comprehensive dataset of object affordances -- GrAFFORD, characterized by 15 affordance classes. Unlike affordance datasets collected in vision and language domains, we annotate in-the-wild sentences with objects and affordances. Experimental results reveal that PTLMs exhibit limited reasoning abilities when it comes to uncommon object affordances. We also observe that pre-trained VLMs do not necessarily capture object affordances effectively. Through few-shot fine-tuning, we demonstrate improvement in affordance knowledge in PTLMs and VLMs. Our research contributes a novel dataset for language grounding tasks, and presents insights into LM capabilities, advancing the understanding of object affordances. Codes and data are available at https://github.com/sayantan11995/Affordance
翻译:暂无翻译