Based on our observations of infrared targets, serious scale variation along within sequence frames has high-frequently occurred. In this paper, we propose a dynamic re-parameterization network (DRPN) to deal with the scale variation and balance the detection precision between small targets and large targets in infrared datasets. DRPN adopts the multiple branches with different sizes of convolution kernels and the dynamic convolution strategy. Multiple branches with different sizes of convolution kernels have different sizes of receptive fields. Dynamic convolution strategy makes DRPN adaptively weight multiple branches. DRPN can dynamically adjust the receptive field according to the scale variation of the target. Besides, in order to maintain effective inference in the test phase, the multi-branch structure is further converted to a single-branch structure via the re-parameterization technique after training. Extensive experiments on FLIR, KAIST, and InfraPlane datasets demonstrate the effectiveness of our proposed DRPN. The experimental results show that detectors using the proposed DRPN as the basic structure rather than SKNet or TridentNet obtained the best performances.
翻译:根据我们对红外目标的观察,在序列框内发生的严重规模变化经常发生。在本文中,我们提议建立一个动态的重新校准网络(DRPN),以处理规模变化,平衡红外数据集中小目标与大目标之间的探测精确度。DRPN采用具有不同大小的变动内核和动态变动战略的多个分支。具有不同大小的变动内核的多个分支的可接收字段大小不同。动态的变动战略使DRPN具有适应性重积多个分支。DRPN能够根据目标的变异度动态调整可接收字段。此外,为了在试验阶段保持有效的推断,多部门结构通过培训后再校准技术进一步转换为单一部门结构。关于FLIR、KAIST和InferPlane数据集的广泛实验显示了我们提议的DRPN的效用。实验结果表明,使用拟议的DPN作为基本结构而不是SKNet或TridentNet的探测器是最佳性。