Transformer-based models have significantly advanced natural language processing and computer vision in recent years. However, due to the irregular and disordered structure of point cloud data, transformer-based models for 3D deep learning are still in their infancy compared to other methods. In this paper we present Point Cross-Attention Transformer (PointCAT), a novel end-to-end network architecture using cross-attentions mechanism for point cloud representing. Our approach combines multi-scale features via two seprate cross-attention transformer branches. To reduce the computational increase brought by multi-branch structure, we further introduce an efficient model for shape classification, which only process single class token of one branch as a query to calculate attention map with the other. Extensive experiments demonstrate that our method outperforms or achieves comparable performance to several approaches in shape classification, part segmentation and semantic segmentation tasks.


翻译:近年来,基于Transformer的模型在自然语言处理和计算机视觉方面有了显著的进展。然而,由于点云数据的不规则和无序结构,与其他方法相比,用于3D深度学习的Transformer-based模型仍处于萌芽阶段。在本文中,我们提出了点交叉注意力Transformer(PointCAT),这是一种新颖的端到端网络架构,使用交叉注意力机制进行点云表示。我们的方法通过两个分离的Transformer分支组合了多尺度特征。为了减少多分支结构带来的计算增加,我们进一步引入了一种高效的模型用于形状分类,它只将一条分支的单一类标记作为查询,以计算另一个分支的注意力映射。广泛的实验证明,我们的方法在形状分类,部分分割和语义分割任务中的表现优于或与几种方法的性能相当。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关VIP内容
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员