Various classes of Graph Neural Networks (GNN) have been proposed and shown to be successful in a wide range of applications with graph structured data. In this paper, we propose a theoretical framework able to compare the expressive power of these GNN architectures. The current universality theorems only apply to intractable classes of GNNs. Here, we prove the first approximation guarantees for practical GNNs, paving the way for a better understanding of their generalization. Our theoretical results are proved for invariant GNNs computing a graph embedding (permutation of the nodes of the input graph does not affect the output) and equivariant GNNs computing an embedding of the nodes (permutation of the input permutes the output). We show that Folklore Graph Neural Networks (FGNN), which are tensor based GNNs augmented with matrix multiplication are the most expressive architectures proposed so far for a given tensor order. We illustrate our results on the Quadratic Assignment Problem (a NP-Hard combinatorial problem) by showing that FGNNs are able to learn how to solve the problem, leading to much better average performances than existing algorithms (based on spectral, SDP or other GNNs architectures). On a practical side, we also implement masked tensors to handle batches of graphs of varying sizes.


翻译:各种图表神经网络( GNN) 的类别已经提出, 并显示在使用图表结构数据的广泛应用中, 各种图表神经网络( GNN) 的类别已经成功。 在本文中, 我们提出一个理论框架, 能够比较这些GNN结构的表达力。 目前的普遍性理论只适用于GNN的棘手类别。 在这里, 我们证明实际GNN的首个近似保证, 为更好地了解其一般化铺平铺路铺路铺路铺路铺路铺路铺路。 我们的理论结果被证明, 由不易变的 GNNN计算图嵌入图( 输入图形节点的调不会影响输出), 和 equivariant GNNNNC 计算这些节点的嵌入( 输入平整流输出)。 我们显示, FGNNNS 能够学习如何以高压模方式解决现有S的平面图解路标, 也显示, 如何以高压方式执行其他的GNNDR 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
182+阅读 · 2020年4月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员