Proper EMA-balance (E: kinetic energy; M: momentum; A: angular momentum), pressure-robustness and $Re$-semi-robustness ($Re$: Reynolds number) are three important properties for exactly divergence-free elements in Navier-Stokes simulations. Pressure-robustness means that the velocity error estimates are independent of the pressure approximation errors; $Re$-semi-robustness means that the constants in error estimates do not depend on the inverse of the viscosity explicitly. In this paper, based on the pressure-robust reconstruction method in [Linke and Merdon, ${\it Comput. Methods Appl. Mech. Engrg.}$, 2016], we propose a novel reconstruction method for a class of non-divergence-free simplicial elements which admits all the above properties with only replacing the kinetic energy by a properly redefined discrete energy. We shall refer to it as "EMAPR" reconstruction throughout this paper. Some numerical comparisons with the exactly divergence-free methods, pressure-robust reconstruction methods and methods with EMAC formulation on classical elements are also provided.
翻译:适当的 EMA 平衡( E: 动能; M: 动力; M: 动力; A: 角力)、 压力- 气压和 美元- 半气压( Rere$: Reynolds number) 是 Navier- Stokes 模拟中完全无差异元素的三大属性。 压力- 气压- 气压- 气压- 平衡意味着速度误差估计数独立于压力近似误差; 美元- 美元- 气压; 气压- 气压- 气压- 气压- 和 美元- 气压- 气压- 气压- 气压- 气压- 气压- 气压- 气压- 气压- 气压- 气压- 气压- 气压- 气压- 气压- 气压- 气压- 气压- 气流- 电流- 电流- 电流- 电流- 电流- 电流/ 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 电流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流- 流-