We study the complexity of small-depth Frege proofs and give the first tradeoffs between the size of each line and the number of lines. Existing lower bounds apply to the overall proof size -- the sum of sizes of all lines -- and do not distinguish between these notions of complexity. For depth-$d$ Frege proofs of the Tseitin principle where each line is a size-$s$ formula, we prove that $\exp(n/2^{\Omega(d\sqrt{\log s})})$ many lines are necessary. This yields new lower bounds on line complexity that are not implied by H{\aa}stad's recent $\exp(n^{\Omega(1/d)})$ lower bound on the overall proof size. For $s = \mathrm{poly}(n)$, for example, our lower bound remains $\exp(n^{1-o(1)})$ for all $d = o(\sqrt{\log n})$, whereas H{\aa}stad's lower bound is $\exp(n^{o(1)})$ once $d = \omega_n(1)$. Our main conceptual contribution is the simple observation that techniques for establishing correlation bounds in circuit complexity can be leveraged to establish such tradeoffs in proof complexity.
翻译:我们研究小深度Frege证据的复杂性, 并在每行大小和行数之间作出首次权衡。 现有的下限适用于总体验证大小 -- -- 所有行的大小之和 -- -- 并且不区分这些复杂概念。 对于每行大小- 美元公式的Tseitin 原则的深度- 美元 Frege证据, 我们证明, 美元= 美元= 美元( d\\ sqrt\ log s}) 许多行是必需的。 这在线复杂性上产生新的下限, 而H- a}stad 最近的美元= (n\\\ omega (1/ d)} 数字= 整个检验规模的较低约束值。 $= mathrm{poly} (n) 美元, 例如, 我们的下限值仍然是$= excreax( n\ 1- o(1)} 美元= oqrormission $, 而Ha} 较低约束值不是 Ha} 复杂性所隐含的, $\\\ exfriquen cirum_ ciral group $, 一旦确定 $_ group_ cleglemental_ cleglemental_ $_ sreglegleglegleglegleglegleglegal_ $。