We study the complexity of small-depth Frege proofs and give the first tradeoffs between the size of each line and the number of lines. Existing lower bounds apply to the overall proof size -- the sum of sizes of all lines -- and do not distinguish between these notions of complexity. For depth-$d$ Frege proofs of the Tseitin principle where each line is a size-$s$ formula, we prove that $\exp(n/2^{\Omega(d\sqrt{\log s})})$ many lines are necessary. This yields new lower bounds on line complexity that are not implied by H{\aa}stad's recent $\exp(n^{\Omega(1/d)})$ lower bound on the overall proof size. For $s = \mathrm{poly}(n)$, for example, our lower bound remains $\exp(n^{1-o(1)})$ for all $d = o(\sqrt{\log n})$, whereas H{\aa}stad's lower bound is $\exp(n^{o(1)})$ once $d = \omega_n(1)$. Our main conceptual contribution is the simple observation that techniques for establishing correlation bounds in circuit complexity can be leveraged to establish such tradeoffs in proof complexity.


翻译:我们研究小深度Frege证据的复杂性, 并在每行大小和行数之间作出首次权衡。 现有的下限适用于总体验证大小 -- -- 所有行的大小之和 -- -- 并且不区分这些复杂概念。 对于每行大小- 美元公式的Tseitin 原则的深度- 美元 Frege证据, 我们证明, 美元= 美元= 美元( d\\ sqrt\ log s}) 许多行是必需的。 这在线复杂性上产生新的下限, 而H- a}stad 最近的美元= (n\\\ omega (1/ d)} 数字= 整个检验规模的较低约束值。 $= mathrm{poly} (n) 美元, 例如, 我们的下限值仍然是$= excreax( n\ 1- o(1)} 美元= oqrormission $, 而Ha} 较低约束值不是 Ha} 复杂性所隐含的, $\\\ exfriquen cirum_ ciral group $, 一旦确定 $_ group_ cleglemental_ cleglemental_ $_ sreglegleglegleglegleglegleglegal_ $。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
5+阅读 · 2020年10月22日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员