The goal of 2D tomographic reconstruction is to recover an image given its projections from various views. It is often presumed that projection angles associated with the projections are known in advance. Under certain situations, however, these angles are known only approximately or are completely unknown. It becomes more challenging to reconstruct the image from a collection of random projections. We propose an adversarial learning based approach to recover the image and the projection angle distribution by matching the empirical distribution of the measurements with the generated data. Fitting the distributions is achieved through solving a min-max game between a generator and a critic based on Wasserstein generative adversarial network structure. To accommodate the update of the projection angle distribution through gradient back propagation, we approximate the loss using the Gumbel-Softmax reparameterization of samples from discrete distributions. Our theoretical analysis verifies the unique recovery of the image and the projection distribution up to a rotation and reflection upon convergence. Our extensive numerical experiments showcase the potential of our method to accurately recover the image and the projection angle distribution under noise contamination.


翻译:2D 映像重建的目标是从各种观点的预测中恢复图像,通常假定与预测有关的投影角度是事先已知的。但是,在某些情况下,这些角度只大致为人所知或完全不为人知。从随机投影的集合中重建图像更具挑战性。我们提议以对抗性学习为基础,通过将测量结果的实证分布与生成的数据相匹配,恢复图像和投影角分布。通过解决基于瓦森斯坦基因对抗网络结构的发电机和评论家之间的微轴游戏,实现分布。为了适应通过梯度反传播更新投影角度分布的情况,我们用离散分布样本的甘贝尔-软轴重新校准来估计损失。我们的理论分析核实了图像的独特恢复以及预测分布,然后在聚合后进行旋转和反省。我们广泛的数字实验展示了我们方法在噪音污染下准确恢复图像和投影角度分布的潜力。

0
下载
关闭预览

相关内容

对抗学习是一种机器学习技术,旨在通过提供欺骗性输入来欺骗模型。最常见的原因是导致机器学习模型出现故障。大多数机器学习技术旨在处理特定的问题集,其中从相同的统计分布(IID)生成训练和测试数据。当这些模型应用于现实世界时,对手可能会提供违反该统计假设的数据。可以安排此数据来利用特定漏洞并破坏结果。
生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
150+阅读 · 2020年12月30日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2020年6月16日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员