We consider the predecessor problem on the ultra-wide word RAM model of computation, which extends the word RAM model with 'ultrawords' consisting of $w^2$ bits [TAMC, 2015]. The model supports arithmetic and boolean operations on ultrawords, in addition to 'scattered' memory operations that access or modify $w$ (potentially non-contiguous) memory addresses simultaneously. The ultra-wide word RAM model captures (and idealizes) modern vector processor architectures. Our main result is a simple, linear space data structure that supports predecessor in constant time and updates in amortized, expected constant time. This improves the space of the previous constant time solution that uses space in the order of the size of the universe. Our result holds even in a weaker model where ultrawords consist of $w^{1+\epsilon}$ bits for any $\epsilon > 0 $. It is based on a new implementation of the classic $x$-fast trie data structure of Willard [Inform. Process. Lett. 17(2), 1983] combined with a new dictionary data structure that supports fast parallel lookups.
翻译:我们考虑超大单词 RAM 计算模型中的前身问题,该模型将单词 RAM 模型的“超大字” 模型扩展为“超大字”, 由 $w $2$ bits [TAMC, 2015] 组成。该模型支持超大字的算术和布林操作,以及同时访问或修改$w$(可能非连续)内存地址的“散装”的存储操作。超大字词 RAM 模型捕捉(和理想化) 现代矢量处理器结构。 我们的主要结果是一个简单、线性的空间数据结构, 支持前身在固定时间、 摊销和预期的固定时间更新。 这改进了以宇宙大小为序使用空间的前一个恒定时间解决方案的空间。 我们的结果甚至维持在一个较弱的模型中, 超词由 $w {1 ⁇ {epsilon} 任何 $ > 0 美元组成的超大字典比特数。 它基于新实施的 典型的 $x- frie fri 数据结构支持 Willard [In. Lett (2)] 支持快速的平行结构。