In this paper, we extend the correspondence between Bayesian estimation and optimal smoothing in a Reproducing Kernel Hilbert Space (RKHS) adding a convexe constraints on the solution. Through a sequence of approximating Hilbertian spaces and a discretized model, we prove that the Maximum A Posteriori (MAP) of the posterior distribution is exactly the optimal constrained smoothing function in the RKHS. This paper can be read as a generalization of the paper [7] of Kimeldorf-Wahba where it is proved that the optimal smoothing solution is the mean of the posterior distribution.
翻译:在本文中,我们扩展了贝叶斯估计和最佳平滑之间的对应关系,在复制的凯尔内尔·希尔伯特空间(RKHS)中增加了对解决方案的限制。通过近似于希尔伯特空间的顺序和一个离散模型,我们证明后方分布的最大后台效应(MAP)正是RKHS中最佳的抑制平滑功能。本文可以被理解为对Kimeldorf-Wahba的论文[7]的概括,其中证明最佳平滑解决方案是后台分布的平均值。