A central topic in functional data analysis is how to design an optimaldecision rule, based on training samples, to classify a data function. We exploit the optimal classification problem when data functions are Gaussian processes. Sharp nonasymptotic convergence rates for minimax excess mis-classification risk are derived in both settings that data functions are fully observed and discretely observed. We explore two easily implementable classifiers based on discriminant analysis and deep neural network, respectively, which are both proven to achieve optimality in Gaussian setting. Our deepneural network classifier is new in literature which demonstrates outstanding performance even when data functions are non-Gaussian. In case of discretely observed data, we discover a novel critical sampling frequency thatgoverns the sharp convergence rates. The proposed classifiers perform favorably in finite-sample applications, as we demonstrate through comparisonswith other functional classifiers in simulations and one real data application.
翻译:功能数据分析的一个中心主题是,如何根据培训样本设计一种最佳决策规则,对数据功能进行分类。当数据功能是高森过程时,我们利用最佳分类问题。在两种情况下,都得出了对数据功能完全观察和分别观察的数据功能的快速非抽吸性超过分类风险趋同率。我们探索了两种基于差异分析和深神经网络的易于执行的分类方法,这两种方法都证明在高山环境中实现了最佳性能。我们的深神经网络分类方法在文献中是新颖的,表明即使在数据功能不是高森过程时,也表现出杰出的性能。在不独立观测的数据中,我们发现了一种新的关键采样频率,用以控制急剧趋同率。拟议的分类方法在有限抽样应用中表现得较好,我们在模拟中与其他功能分类器进行比较并使用一个真实的数据应用中证明了这一点。