Matching and pricing are two critical levers in two-sided marketplaces to connect demand and supply. The platform can produce more efficient matching and pricing decisions by batching the demand requests. We initiate the study of the two-stage stochastic matching problem, with or without pricing, to enable the platform to make improved decisions in a batch with an eye toward the imminent future demand requests. This problem is motivated in part by applications in online marketplaces such as ride hailing platforms. We design online competitive algorithms for vertex-weighted (or unweighted) two-stage stochastic matching for maximizing supply efficiency, and two-stage joint matching and pricing for maximizing market efficiency. In the former problem, using a randomized primal-dual algorithm applied to a family of ``balancing'' convex programs, we obtain the optimal $3/4$ competitive ratio against the optimum offline benchmark. Using a factor revealing program and connections to submodular optimization, we improve this ratio against the optimum online benchmark to $(1-1/e+1/e^2)\approx 0.767$ for the unweighted and $0.761$ for the weighted case. In the latter problem, we design optimal $1/2$-competitive joint pricing and matching algorithm by borrowing ideas from the ex-ante prophet inequality literature. We also show an improved $(1-1/e)$-competitive algorithm for the special case of demand efficiency objective using the correlation gap of submodular functions. Finally, we complement our theoretical study by using DiDi's ride-sharing dataset for Chengdu city and numerically evaluating the performance of our proposed algorithms in practical instances of this problem.
翻译:匹配和定价是双面市场中连接供需的两大关键杠杆。 平台可以通过对需求请求进行批量,产生更高效的匹配和定价决定。 我们开始研究两阶段的随机匹配问题, 不论是否定价, 以使平台能够对即将到来的今后需求请求进行批次改进决策。 这一问题的部分原因是在线市场应用程序, 如骑车欢迎平台的应用。 我们设计了双阶段双阶段随机匹配的在线竞争性算法, 以最大限度地提高供应效率, 以及两阶段联合匹配和定价, 以最大限度地提高市场效率。 在前一个问题中, 使用随机化的初级匹配算法, 使平台能够对即将到来的今后需求需求需求做出更好的决策。 使用一个显示程序和与亚模式优化的连接的因素, 我们用最佳在线基准来提高这一比率( $1/ e+1/e2)\\ approx, 用于对未加权和0.767美元(美元) 双阶段联合匹配, 使用我们的标准- 成本- 成本- 平价, 我们用一个最佳预算- 的升级的升级的模型, 后, 我们用一个测试- 优化的升级- 标准- 标准- 测试- 数据- 升级- 测试- 数据- 测试- 测试- 测试- 测试- 测试- 升级- 成本- 升级- 成本- 升级- 升级- 升级- 的升级- 工具- 工具- 的升级- 的升级- 。