Long range detection is a cornerstone of defense in many operating domains (land, sea, undersea, air, space, ..,). In the cyber domain, long range detection requires the analysis of significant network traffic from a variety of observatories and outposts. Construction of anonymized hypersparse traffic matrices on edge network devices can be a key enabler by providing significant data compression in a rapidly analyzable format that protects privacy. GraphBLAS is ideally suited for both constructing and analyzing anonymized hypersparse traffic matrices. The performance of GraphBLAS on an Accolade Technologies edge network device is demonstrated on a near worse case traffic scenario using a continuous stream of CAIDA Telescope darknet packets. The performance for varying numbers of traffic buffers, threads, and processor cores is explored. Anonymized hypersparse traffic matrices can be constructed at a rate of over 50,000,000 packets per second; exceeding a typical 400 Gigabit network link. This performance demonstrates that anonymized hypersparse traffic matrices are readily computable on edge network devices with minimal compute resources and can be a viable data product for such devices.
翻译:长距离探测是许多操作领域(陆地、海洋、海底、空气、空间、.)防御的基石。在网络领域,长距离探测需要分析各种观测站和前哨的重要网络流量。在边端网络设备上建造匿名超粗交通矩阵可以是一个关键推进器,以快速解析的方式提供大量数据压缩,保护隐私。GreabBLAS最适宜用于建造和分析匿名化超渗透式交通矩阵。在Accolade技术边端网络设备上,GreabBLAS的性能在近乎更差的流量假设中展示,使用了CAIDA望远镜黑网包的连续流。探索了不同数量交通缓冲、线和处理器核心的性能。匿名超粗交通矩阵可以以每秒5 000 000 000万袋的速度构建,超过典型的400 Gigabit网络链接。这种性能显示,在边端网络设备上匿名化超粗交通矩阵的性能很容易用最小的精细资源对准数据产品进行编译。