While sentence anomalies have been applied periodically for testing in NLP, we have yet to establish a picture of the precise status of anomaly information in representations from NLP models. In this paper we aim to fill two primary gaps, focusing on the domain of syntactic anomalies. First, we explore fine-grained differences in anomaly encoding by designing probing tasks that vary the hierarchical level at which anomalies occur in a sentence. Second, we test not only models' ability to detect a given anomaly, but also the generality of the detected anomaly signal, by examining transfer between distinct anomaly types. Results suggest that all models encode some information supporting anomaly detection, but detection performance varies between anomalies, and only representations from more recent transformer models show signs of generalized knowledge of anomalies. Follow-up analyses support the notion that these models pick up on a legitimate, general notion of sentence oddity, while coarser-grained word position information is likely also a contributor to the observed anomaly detection.


翻译:虽然在NLP测试时定期应用了判决异常,但我们尚未在NLP模型中确定异常信息的确切状况。 在本文中,我们的目标是填补两个主要空白,重点是合成异常领域。首先,我们通过设计不同句子异常发生时的等级水平的测试任务,探索异常编码方面的细微差异。第二,我们不仅测试模型检测特定异常现象的能力,而且测试所检测到的异常信号的一般性,通过检查不同异常类型之间的转移。结果显示,所有模型都记录了一些支持异常现象检测的信息,但检测性能在异常之间有所不同,只有较近期变异模型的表示显示异常现象的普遍知识迹象。后续分析支持以下观点,即这些模型接收了一种合法的、一般的句态奇观,而粗略的单词位置信息也可能是观察到异常现象检测的促成因素。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
33+阅读 · 2021年11月30日
专知会员服务
32+阅读 · 2021年9月16日
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Survey on GANs for Anomaly Detection
Arxiv
7+阅读 · 2021年9月14日
Arxiv
18+阅读 · 2020年10月9日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员