We consider annotation efficient learning in Digital Pathology (DP), where expert annotations are expensive and thus scarce. We explore the impact of image and input resolution on DP patch classification performance. We use two cancer patch classification datasets PCam and CRC, to validate the results of our study. Our experiments show that patch classification performance can be improved by manipulating both the image and input resolution in annotation-scarce and annotation-rich environments. We show a positive correlation between the image and input resolution and the patch classification accuracy on both datasets. By exploiting the image and input resolution, our final model trained on < 1% of data performs equally well compared to the model trained on 100% of data in the original image resolution on the PCam dataset.
翻译:我们认为在数字病理学(DP)中,专家注释昂贵,因而稀缺。我们探索图像和输入分辨率对DP补丁分类性能的影响。我们使用两个癌症补丁分类数据集PCAM和CRC来验证我们研究的结果。我们的实验表明,通过在批注-痕蚀和注解丰富的环境中操纵图像和输入分辨率,可以改进补丁分类性能。我们显示了图像和输入分辨率与两个数据集的补丁分类准确性之间的正相关关系。我们利用图像和输入分辨率,我们所培训的关于 < 1%数据的最后模型与所培训的关于PCam数据集原始图像分辨率100%数据的模式相比,表现同样好。