We consider the numerical taxonomy problem of fitting a positive distance function ${D:{S\choose 2}\rightarrow \mathbb R_{>0}}$ by a tree metric. We want a tree $T$ with positive edge weights and including $S$ among the vertices so that their distances in $T$ match those in $D$. A nice application is in evolutionary biology where the tree $T$ aims to approximate the branching process leading to the observed distances in $D$ [Cavalli-Sforza and Edwards 1967]. We consider the total error, that is the sum of distance errors over all pairs of points. We present a deterministic polynomial time algorithm minimizing the total error within a constant factor. We can do this both for general trees, and for the special case of ultrametrics with a root having the same distance to all vertices in $S$. The problems are APX-hard, so a constant factor is the best we can hope for in polynomial time. The best previous approximation factor was $O((\log n)(\log \log n))$ by Ailon and Charikar [2005] who wrote "Determining whether an $O(1)$ approximation can be obtained is a fascinating question".


翻译:我们认为,在数字分类学上,需要用树来设置正距离函数${D:{S\choose 2 ⁇ rightrow \mathbb R ⁇ 0 ⁇ $。我们需要一个具有正边缘重量的树$T$,并在顶端中包括$S$,这样它们的距离就等于$D。在进化生物学中,一个很好的应用是树$T旨在接近分支过程,导致观察到的距离为$D[Cavalli-Sforza和Edwards 1967]。我们考虑的是总错误,即所有两点的距离差错之和。我们提出一个确定性多元时间算法,在恒定系数内将总错误最小化。我们可以对普通树木和根与所有脊椎以$S$的特例都这样做。问题在于APX-hard,因此一个恒定因素是我们在多诺米时间中可以期望的最好因素。 最好的前近点系数是$O(log n)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
61+阅读 · 2020年3月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Cayley图数据库的可视化(Visualize)
Python开发者
5+阅读 · 2019年9月9日
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年11月30日
VIP会员
相关资讯
Cayley图数据库的可视化(Visualize)
Python开发者
5+阅读 · 2019年9月9日
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员