We study the problem of the nonparametric estimation for the density $\pi$ of the stationary distribution of a $d$-dimensional stochastic differential equation $(X_t)_{t \in [0, T]}$. From the continuous observation of the sampling path on $[0, T]$, we study the rate of estimation of $\pi(x)$ as $T$ goes to infinity. One finding is that, for $d \ge 3$, the rate of estimation depends on the smoothness $\beta = (\beta_1, ... , \beta_d)$ of $\pi$. In particular, having ordered the smoothness such that $\beta_1 \le ... \le \beta_d$, it depends on the fact that $\beta_2 < \beta_3$ or $\beta_2 = \beta_3$. We show that kernel density estimators achieve the rate $(\frac{\log T}{T})^\gamma$ in the first case and $(\frac{1}{T})^\gamma$ in the second, for an explicit exponent $\gamma$ depending on the dimension and on $\bar{\beta}_3$, the harmonic mean of the smoothness over the $d$ directions after having removed $\beta_1$ and $\beta_2$, the smallest ones. Moreover, we obtain a minimax lower bound on the $\mathbf{L}^2$-risk for the pointwise estimation with the same rates $(\frac{\log T}{T})^\gamma$ or $(\frac{1}{T})^\gamma$, depending on the value of $\beta_2$ and $\beta_3$.


翻译:我们研究的是 美元= 3, 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 平滑度= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 立方 美元= 美元= 美元= 立方 美元= 美元= 美元= 美元= 美元= 美元= 立方 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= = 元= = 内位= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 直值= 美元= 直值= 美元= 美元= 直值=

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2018年11月15日
Arxiv
0+阅读 · 2021年11月28日
Arxiv
0+阅读 · 2021年11月25日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
4+阅读 · 2018年11月15日
Top
微信扫码咨询专知VIP会员