We consider the minimax query complexity of online planning with a generative model in fixed-horizon Markov decision processes (MDPs) with linear function approximation. Following recent works, we consider broad classes of problems where either (i) the optimal value function $v^\star$ or (ii) the optimal action-value function $q^\star$ lie in the linear span of some features; or (iii) both $v^\star$ and $q^\star$ lie in the linear span when restricted to the states reachable from the starting state. Recently, Weisz et al. (2021b) showed that under (ii) the minimax query complexity of any planning algorithm is at least exponential in the horizon $H$ or in the feature dimension $d$ when the size $A$ of the action set can be chosen to be exponential in $\min(d,H)$. On the other hand, for the setting (i), Weisz et al. (2021a) introduced TensorPlan, a planner whose query cost is polynomial in all relevant quantities when the number of actions is fixed. Among other things, these two works left open the question whether polynomial query complexity is possible when $A$ is subexponential in $min(d,H)$. In this paper we answer this question in the negative: we show that an exponentially large lower bound holds when $A=\Omega(\min(d^{1/4},H^{1/2}))$, under either (i), (ii) or (iii). In particular, this implies a perhaps surprising exponential separation of query complexity compared to the work of Du et al. (2021) who prove a polynomial upper bound when (iii) holds for all states. Furthermore, we show that the upper bound of TensorPlan can be extended to hold under (iii) and, for MDPs with deterministic transitions and stochastic rewards, also under (ii).


翻译:我们考虑的是在线规划的微质量质询复杂性, 包括固定正数 Markov 决策程序( MDPs ) 的基因模型。 在最近的工作之后, 我们考虑的问题范围很广, 其中( 一) 最佳值函数 $v ⁇ star$ 或 (二) 最佳行动价值函数 $q ⁇ star$ 位于某些特性的线性范围; 或 (三) 美元=star$ 和 $q ⁇ star$ 存在于线性范围内, 仅限于起始状态可以达到的国家。 最近, Weisz 等人( 2021b) 显示, 在 (二) 美元下, 任何规划的微量查询复杂度在地平线上至少是 $++% zarstar, 或者在特性尺寸上是 $1美元, 美元 。 在动作的直径直线上, (一) 维兹等人( 2021) 引入Tensor Plan, 其所有查询成本在所有相关数量中可能是多元的 。 在磁盘变变变数时, 或变变数中, 这些变数在硬的答案中, 。

0
下载
关闭预览

相关内容

Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
专知会员服务
17+阅读 · 2020年9月6日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
4+阅读 · 2021年4月13日
VIP会员
相关VIP内容
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
专知会员服务
17+阅读 · 2020年9月6日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
专知会员服务
159+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员