We present a Physics-Informed Neural Network (PINN) to simulate the thermochemical evolution of a composite material on a tool undergoing cure in an autoclave. In particular, we solve the governing coupled system of differential equations -- including conductive heat transfer and resin cure kinetics -- by optimizing the parameters of a deep neural network using a physics-based loss function. To account for the vastly different behaviour of thermal conduction and resin cure, we design a PINN consisting of two disconnected subnetworks, and develop a sequential training algorithm that mitigates instability present in traditional training methods. Further, we incorporate explicit discontinuities into the DNN at the composite-tool interface and enforce known physical behaviour directly in the loss function to improve the solution near the interface. Finally, we train the PINN with a technique that automatically adapts the weights on the loss terms corresponding to PDE, boundary, interface, and initial conditions. The performance of the proposed PINN is demonstrated in multiple scenarios with different material thicknesses and thermal boundary conditions.
翻译:我们提出了一个物理进化神经网络(PINN),以模拟一个在自动化炉中正在治愈的工具上的合成材料的热化学演进。特别是,我们通过利用物理损失功能优化深神经网络参数,解决不同方程式的调节组合系统 -- -- 包括导热传输和树脂治愈动能。为了说明热导和树脂治愈的巨大不同行为,我们设计了一个由两个互不连接的子网络组成的PINN,并开发一个顺序培训算法,以减轻传统培训方法中的不稳定性。此外,我们将明确的不连续性纳入综合工具界面的 DNN,并在损失函数中直接执行已知的物理行为,以改进界面附近的解决方案。最后,我们用一种技术对PINN进行培训,自动调整与PDE、边界、界面和初始条件相关的损失条件的重量。提议的PINN的性能在多种情况下都表现了不同的材料厚度和热边界条件。