We learn optimal user association policies for traffic from different locations to Access Points(APs), in the presence of unknown dynamic traffic demand. We aim at minimizing a broad family of $\alpha$-fair cost functions that express various objectives in load assignment in the wireless downlink, such as total load or total delay minimization. Finding an optimal user association policy in dynamic environments is challenging because traffic demand fluctuations over time are non-stationary and difficult to characterize statistically, which obstructs the computation of cost-efficient associations. Assuming arbitrary traffic patterns over time, we formulate the problem of online learning of optimal user association policies using the Online Convex Optimization (OCO) framework. We introduce a periodic benchmark for OCO problems that generalizes state-of-the-art benchmarks. We exploit inherent properties of the online user association problem and propose PerOnE, a simple online learning scheme that dynamically adapts the association policy to arbitrary traffic demand variations. We compare PerOnE against our periodic benchmark and prove that it enjoys the no-regret property, with additional sublinear dependence of the network size. To the best of our knowledge, this is the first work that introduces a periodic benchmark for OCO problems and a no-regret algorithm for the online user association problem. Our theoretical findings are validated through results on a real-trace dataset.


翻译:我们学习从不同地点到接入点的交通的最佳用户协会政策,因为交通需求变化不定。我们学习从不同地点到接入点的交通需求变化不明。我们的目标是最大限度地减少广义的、以alpha$-公平成本计算的功能,以表达无线下行链路载运任务的不同目标,例如负载总量或完全延迟最小化。我们在动态环境中寻找最佳用户协会政策是富有挑战性的,因为交通需求随时间变化而变化,难以在统计上定性,妨碍计算成本效率协会。假设任意的交通模式,我们利用在线 Convex优化(OCO)框架来制定最佳用户协会政策在线学习的问题。我们为OCO问题引入一个定期基准,我们利用在线用户协会的固有特性,提出PerOnE这一简单的在线学习计划,以动态方式调整联系政策,以适应任意的交通需求变化。我们比较PerOONE的定期基准,并证明它享有无关系属性,同时对网络规模的子线性依赖性关系。我们的最佳知识是将最新基准引入了我们的在线数据分析结果。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月11日
Dynamic Transfer Learning for Named Entity Recognition
Arxiv
3+阅读 · 2018年12月13日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员