In this paper, we consider the Byzantine-robust stochastic optimization problem defined over decentralized static and time-varying networks, where the agents collaboratively minimize the summation of expectations of stochastic local cost functions, but some of the agents are unreliable due to data corruptions, equipment failures or cyber-attacks. The unreliable agents, which are called as Byzantine agents thereafter, can send faulty values to their neighbors and bias the optimization process. Our key idea to handle the Byzantine attacks is to formulate a total variation (TV) norm-penalized approximation of the Byzantine-free problem, where the penalty term forces the local models of regular agents to be close, but also allows the existence of outliers from the Byzantine agents. A stochastic subgradient method is applied to solve the penalized problem. We prove that the proposed method reaches a neighborhood of the Byzantine-free optimal solution, and the size of neighborhood is determined by the number of Byzantine agents and the network topology. Numerical experiments corroborate the theoretical analysis, as well as demonstrate the robustness of the proposed method to Byzantine attacks and its superior performance comparing to existing methods.


翻译:在本文中,我们考虑了Byzantine-robust-robust stochastistic 优化问题,它是由分散的静态和时间变化的网络界定的,在这种网络中,代理商通过协作尽量减少对当地成本功能期望的汇总,但由于数据腐败、设备故障或网络攻击,其中一些代理商是不可靠的。此后被称为Byzantine代理商的不可靠的代理商可以向其邻居发送错误的值,并偏向优化过程。我们处理Byzantine袭击的关键想法是制定一种完全变异(TV)的无拜占庭问题规范-惩罚性近似,即惩罚性术语迫使普通代理商的当地模式接近,但也允许拜占庭代理商的外部商存在。一种分级方法用于解决受罚问题。我们证明拟议方法到达了拜占庭无损最佳解决方案的邻里,而邻里的规模由Byzantine代理商的数量和网络顶部决定。 纳美实验证实了理论性分析,并比照其现行攻击方法的稳健性。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
45+阅读 · 2020年10月31日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
已删除
将门创投
4+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月19日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员