The ultra-dense deployment of interconnected satellites will characterize future low Earth orbit (LEO) mega-constellations. Exploiting this towards a more efficient satellite network (SatNet), this paper proposes a novel LEO SatNet architecture based on distributed massive multiple-input multiple-output (DM-MIMO) technology allowing ground user terminals to be connected to a cluster of satellites. To this end, we investigate various aspects of DM-MIMO-based satellite network design, the benefits of using this architecture, the associated challenges, and the potential solutions. In addition, we propose a distributed joint power allocation and handover management (D-JPAHM) technique that jointly optimizes the power allocation and handover management processes in a cross-layer manner. This framework aims to maximize the network throughput and minimize the handover rate while considering the quality-of-service (QoS) demands of user terminals and the power capabilities of the satellites. Moreover, we devise an artificial intelligence (AI)-based solution to efficiently implement the proposed D-JPAHM framework in a manner suitable for real-time operation and the dynamic SatNet environment. To the best of our knowledge, this is the first work to introduce and study DM-MIMO technology in LEO SatNets. Extensive simulation results reveal the superiority of the proposed architecture and solutions compared to conventional approaches in the literature.


翻译:为此,我们调查了DM-MIMO卫星网络设计的各个方面、使用这一结构的好处、相关挑战和潜在解决办法。此外,我们建议采用分散式联合电力分配和移交管理(D-JPAHM)技术,以跨层方式联合优化权力分配和移交管理程序。这个框架的目的是在考虑用户终端服务质量和卫星能力的同时,最大限度地扩大网络的吞吐量和最大限度地降低移交率。我们提出的最先进的MDR-MIMO卫星终端服务要求和卫星的动力能力。此外,我们设计了一个人工智能(AI)解决方案,以高效地实施拟议的D-JPAHM框架,其方式首先适合实时操作和动态的SatNet环境。在MDRM模型中,将最佳的MLOF模型和最高级的模型引入了我们最先进的模型。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Analysis of Distributed Deep Learning in the Cloud
Arxiv
0+阅读 · 2022年12月20日
Arxiv
0+阅读 · 2022年12月20日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员