In comparison to classical shallow representation learning techniques, deep neural networks have achieved superior performance in nearly every application benchmark. But despite their clear empirical advantages, it is still not well understood what makes them so effective. To approach this question, we introduce deep frame approximation, a unifying framework for representation learning with structured overcomplete frames. While exact inference requires iterative optimization, it may be approximated by the operations of a feed-forward deep neural network. We then indirectly analyze how model capacity relates to the frame structure induced by architectural hyperparameters such as depth, width, and skip connections. We quantify these structural differences with the deep frame potential, a data-independent measure of coherence linked to representation uniqueness and stability. As a criterion for model selection, we show correlation with generalization error on a variety of common deep network architectures such as ResNets and DenseNets. We also demonstrate how recurrent networks implementing iterative optimization algorithms achieve performance comparable to their feed-forward approximations. This connection to the established theory of overcomplete representations suggests promising new directions for principled deep network architecture design with less reliance on ad-hoc engineering.


翻译:与典型的浅度代表性学习技术相比,深神经网络几乎在每个应用基准中都取得了优异的性能。但是,尽管它们具有明显的实证优势,但仍然不能很好地理解是什么使得它们如此有效。为了解决这一问题,我们引入了深度框架近似,这是代表学习的统一框架,有结构化的超完整框架。虽然精确的推论需要迭代优化,但可能与一个向后进深层神经网络的运作相近。然后,我们间接地分析模型能力与建筑超强参数(如深度、宽度和跳过连接)所引发的框架结构结构结构的关系。我们将这些结构差异与深框架潜力(即与代表的独特性和稳定性相关的数据独立度衡量标准)加以量化。作为选择模型的标准,我们展示了在诸如ResNets和DenseNets等各种共同的深深深层网络结构上与一般错误的相关性。我们还展示了实施迭代优化算算法的经常网络如何取得与它们向前反馈近似的业绩。与既定的超全度表述理论的关联表明,有希望有新的方向,在不那么依赖自动工程的情况下进行有原则的深层网络结构设计。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
自动结构变分推理,Automatic structured variational inference
专知会员服务
39+阅读 · 2020年2月10日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年2月5日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员