Recent work (Xu et al., 2020) has suggested that numeral systems in different languages are shaped by a functional need for efficient communication in an information-theoretic sense. Here we take a learning-theoretic approach and show how efficient communication emerges via reinforcement learning. In our framework, two artificial agents play a Lewis signaling game where the goal is to convey a numeral concept. The agents gradually learn to communicate using reinforcement learning and the resulting numeral systems are shown to be efficient in the information-theoretic framework of Regier et al. (2015); Gibson et al. (2017). They are also shown to be similar to human numeral systems of same type. Our results thus provide a mechanistic explanation via reinforcement learning of the recent results in Xu et al. (2020) and can potentially be generalized to other semantic domains.
翻译:最近的工作(Xu等人,2020年)表明,不同语言的数字系统是由信息理论意义上的有效通信功能需要决定的。在这里,我们采取学习理论方法,展示如何通过强化学习进行有效的通信。在我们的框架内,两个人工代理玩刘易斯信号游戏,目的是传递数字概念。这些代理逐渐学会使用强化学习进行沟通,由此产生的数字系统在Regier等人(2015年)、Gibson等人(2017年)的信息理论框架中证明是有效的。它们也与同类的人类数字系统相似。因此,我们的结果通过强化学习许等人(2020年)最近的成果,提供了机械的解释,并有可能被其他语系广泛推广。