On a shutter press, modern handheld cameras capture multiple images in rapid succession and merge them to generate a single image. However, individual frames in a burst are misaligned due to inevitable motions and contain multiple degradations. The challenge is to properly align the successive image shots and merge their complimentary information to achieve high-quality outputs. Towards this direction, we propose Burstormer: a novel transformer-based architecture for burst image restoration and enhancement. In comparison to existing works, our approach exploits multi-scale local and non-local features to achieve improved alignment and feature fusion. Our key idea is to enable inter-frame communication in the burst neighborhoods for information aggregation and progressive fusion while modeling the burst-wide context. However, the input burst frames need to be properly aligned before fusing their information. Therefore, we propose an enhanced deformable alignment module for aligning burst features with regards to the reference frame. Unlike existing methods, the proposed alignment module not only aligns burst features but also exchanges feature information and maintains focused communication with the reference frame through the proposed reference-based feature enrichment mechanism, which facilitates handling complex motions. After multi-level alignment and enrichment, we re-emphasize on inter-frame communication within burst using a cyclic burst sampling module. Finally, the inter-frame information is aggregated using the proposed burst feature fusion module followed by progressive upsampling. Our Burstormer outperforms state-of-the-art methods on burst super-resolution, burst denoising and burst low-light enhancement. Our codes and pretrained models are available at https:// github.com/akshaydudhane16/Burstormer
翻译:现代手持相机在快速连续拍摄并合并多个图像以生成单个图像时,由于不可避免的运动而导致爆发中的单个帧存在多个降级。挑战在于正确对齐连续的图像拍摄并合并它们的互补信息,以实现高质量的输出。为此,我们提出了Burstormer:一种基于变形注意力的爆发式图像恢复和增强新型Transformer结构。相比现有方法,我们的方法利用多尺度本地和非局部特征,以实现更好的对齐和特征融合。我们的关键思想是启用爆发式邻域内的帧间通信,以进行信息集成和渐进融合,同时建模爆发式宽上下文。然而,在融合它们的信息之前,需要正确对齐连续的图像拍摄。因此,我们提出了一个增强的可变形对齐模块,用于将帧特征相对于参考帧对齐。与现有方法不同,所提出的对齐模块不仅对齐爆发特征,而且通过所提出的基于参考特征的特征增强机制交换特征信息,并通过维护与参考帧的聚焦通信来进行处理复杂的运动。在多级对齐和增强之后,我们使用循环爆发采样模块重点强调爆发内部的帧间通信。最后,使用所提出的爆发式特征融合模块聚合帧间信息,然后进行逐渐上采样。我们的Burstormer在爆发式超分辨率、爆发式去噪和爆发式低光增强方面优于现有的最佳方法。我们的代码和预训练模型可在https://github.com/akshaydudhane16/Burstormer上获得。