Since their introduction, Lie group integrators have become a method of choice in many application areas. Various formulations of these integrators exist, and in this work we focus on Runge--Kutta--Munthe--Kaas methods. First, we briefly introduce this class of integrators, considering some of the practical aspects of their implementation, such as adaptive time stepping. We then present some mathematical background that allows us to apply them to some families of Lagrangian mechanical systems. We conclude with an application to a nontrivial mechanical system: the N-fold 3D pendulum.
翻译:自引入以来,利小组集成者已成为许多应用领域的一种选择方法。这些集成者的各种配方存在,在这项工作中,我们把重点放在龙格-库塔-蒙特-卡亚斯方法上。首先,我们简要地介绍了这一类集成者,考虑到其实施的一些实际方面,例如适应性时间阶。然后,我们介绍了一些数学背景,使我们能够将其应用于拉格朗加机械系统的某些家庭。我们最后对非三重机械系统,即N3D钟式系统进行了应用。