Systems of differential-algebraic equations are routinely automatically produced by modeling enviroments such as Maplesim, System Modeler and Modelica. Structural methods are important for reducing the index and obtaining hidden constraints of such daes. This is especially the case for high index non-linear daes. Although such structural analysis is often successful for many dynamic systems, it may fail if the resulting Jacobian is still singular due to symbolic cancellation or numerical degeneration. Existing modified structural methods can handle some cases caused by symbolic cancellation, where assumes the determinant of a Jacobian matrix is identically zero. This paper removes such assumptions and provides numerical methods to analyze such degenerated cases using real algebraic geometry for polynomially nonlinear daes. Firstly, we provide a witness point method, which produces witness points on all components and can help to detect degeneration on all components of polynomially daes. Secondly, we propose an implicit index reduction method which can restore a full rank Jacobian matrix for degenerated dae. Thirdly, based on IIR, we introduce an improved structural method, which can numerically solve degenerated daes on all components. Examples are given to illustrate our methods and show their advantages for degenerated daes.


翻译:差异- 藻类等方程式的系统通常通过诸如 Maplesim、 System Modeler 和 Modica 等建模性昆虫而自动生成。 结构方法对于减少指数和获取这些花头的隐藏限制非常重要。 特别是对于高指数非线性花头来说, 结构方法非常重要。 虽然这种结构分析对于许多动态系统来说往往很成功, 但是如果由此产生的Jacobian由于象征性取消或数字变异而仍然具有单一性, 则这种结构方法可能会失败。 现有的经修改的结构方法可以处理由象征性取消引起的一些案例, 假设Jacobian 矩阵的决定因素是相同的零。 本文删除了这些假设, 并提供数字方法来分析这些退化的病例, 使用真实的代数性地貌测量方法, 来分析多元非线性小花头。 首先, 我们提供一个证人点方法, 产生所有组成部分的证人点, 有助于检测多球形面面面面面面所有组成部分的变形。 其次, 我们提议隐含的指数减少方法, 可以恢复整个等级的Jacobian 矩阵 矩阵 。 第三, 我们引入了一种改进的结构方法, 可以用数字解变形变形方法, 并展示各种方法。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
Top
微信扫码咨询专知VIP会员