Heavy rainfall distributional modeling is essential in any impact studies linked to the water cycle, e.g.\ flood risks. Still, statistical analyses that both take into account the temporal and multivariate nature of extreme rainfall are rare, and often, a complex de-clustering step is needed to make extreme rainfall temporally independent. A natural question is how to bypass this de-clustering in a multivariate context. To address this issue, we introduce the stable sums method. Our goal is to incorporate time and space extreme dependencies in the analysis of heavy tails. To reach our goal, we build on large deviations of regularly varying stationary time series. Numerical experiments demonstrate that our novel approach enhances return levels inference in two ways. First, it is robust concerning time dependencies. We implement it alike on independent and dependent observations. In the univariate setting, it improves the accuracy of confidence intervals compared to the main estimators requiring temporal de-clustering. Second, it thoughtfully integrates the spatial dependencies. In simulation, the multivariate stable sums method has a smaller mean squared error than its component-wise implementation. We apply our method to infer high return levels of daily fall precipitation amounts from a national network of weather stations in France.
翻译:在与水循环相关的任何影响研究中,如洪水风险,大降雨分布模型都是重要的。不过,考虑到极端降雨的时间性和多变性的统计分析很少,而且往往需要复杂的去集群步骤,才能使极端降雨具有时间独立性。一个自然的问题是,如何绕过这种在多变背景下的去集群模式。为了解决这一问题,我们采用了稳定的总量方法。我们的目标是将时间和空间极端依赖性纳入重尾分析中。为了达到我们的目标,我们利用经常变化的固定时间序列的巨大偏差。数字实验表明,我们的新办法以两种方式增进回报率的推断。首先,关于时间依赖性,我们同样需要依靠独立和依赖性的观察。在非梯度环境下,我们采用的方法提高了信任度的准确度,与需要时间去集群的主要估计者相比。第二,我们设想的是将空间依赖性结合。在模拟中,多变量稳定数据方法从高温度的每日回升速度到法国的回升速度。我们采用的方法。