Millimeter wave (mmWave) massive multiple-input multiple-output (massive MIMO) is one of the most promising technologies for the fifth generation and beyond wireless communication system. However, a large number of antennas incur high power consumption and hardware costs, and high-frequency communications place a heavy burden on the analog-to-digital converters (ADCs) at the base station (BS). Furthermore, it is too costly to equipping each antenna with a high-precision ADC in a large antenna array system. It is promising to adopt low-resolution ADCs to address this problem. In this paper, we investigate the cascaded channel estimation for a mmWave massive MIMO system aided by a reconfigurable intelligent surface (RIS) with the BS equipped with few-bit ADCs. Due to the low-rank property of the cascaded channel, the estimation of the cascaded channel can be formulated as a low-rank matrix completion problem. We introduce a Bayesian optimal estimation framework for estimating the user-RIS-BS cascaded channel to tackle with the information loss caused by quantization. To implement the estimator and achieve the matrix completion, we use efficient bilinear generalized approximate message passing (BiG-AMP) algorithm. Extensive simulation results verify that our proposed method can accurately estimate the cascaded channel for the RIS-aided mmWave massive MIMO system with low-resolution ADCs.


翻译:(mWave) 大规模多输出多输出波(massive MIMO) 是第五代人和无线通信系统以外最有希望的技术之一。然而,大量天线导致高电耗和硬件成本,高频通信给基站的模拟数字转换器(ADCs)造成沉重负担。此外,在大型天线阵列系统中为每个天线配备高精度ADC(Massive MIMO)太昂贵了。为解决这一问题,采用低分辨率ADC(MIMO)是很有希望的技术之一。在本文中,我们调查了由智能重新配置的智能表面(RIS)协助的大型毫米Wave MIMO(MIMO)系统的连流频道估算。由于级联频道的特性较低,对级联频道的估算可以算成一个低级矩阵完成问题。我们引入了一种巴伊斯最佳估算框架,用于估算用户-RIS-BS级联的频道,以便应对低分辨率数据系统造成的信息损失。我们用通用的G-BISMLA(G) 高分辨率校平级的模拟模型测试方法可以实现。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
59+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员