Kidney transplantation can significantly enhance living standards for people suffering from end-stage renal disease. A significant factor that affects graft survival time (the time until the transplant fails and the patient requires another transplant) for kidney transplantation is the compatibility of the Human Leukocyte Antigens (HLAs) between the donor and recipient. In this paper, we propose new biologically-relevant feature representations for incorporating HLA information into machine learning-based survival analysis algorithms. We evaluate our proposed HLA feature representations on a database of over 100,000 transplants and find that they improve prediction accuracy by about 1%, modest at the patient level but potentially significant at a societal level. Accurate prediction of survival times can improve transplant survival outcomes, enabling better allocation of donors to recipients and reducing the number of re-transplants due to graft failure with poorly matched donors.
翻译:肾移植可以大大提高肾脏移植患者的生活水平。影响肾移植移植的移植存活时间(移植失败之前的时间和病人需要再移植一次)的一个重要因素是捐赠者和接受者之间人体Leukocyte 抗原(HLAs)的兼容性。在本文中,我们提出了将HLA信息纳入基于机器学习的生存分析算法的新的生物相关特征说明。我们评估了在10万多个移植数据库中我们提议的HLA特征说明,发现它们提高了预测准确性约1%,在病人一级较低,但在社会一级可能很重要。 准确预测存活时间可以改善移植存活结果,使捐赠者能够更好地分配到接受者手中,并减少由于移植失败而导致的再移植数量,而捐赠者则不匹配。