In the coded caching problem, as originally formulated by Maddah-Ali and Niesen, a server communicates via a noiseless shared broadcast link to multiple users that have local storage capability. In order for a user to decode its demanded file from the coded multicast transmission, the demands of all the users must be globally known, which may violate the privacy of the users. To overcome this privacy problem, Wan and Caire recently proposed several schemes that attain coded multicasting gain while simultaneously guarantee information theoretic privacy of the users' demands. In Device-to-Device (D2D) networks, the demand privacy problem is further exacerbated by the fact that each user is also a transmitter, which appears to be needing the knowledge of the files demanded by the remaining users in order to form its coded multicast transmission. This paper shows how to solve this seemingly infeasible problem. The main contribution of this paper is the development of novel achievable and converse bounds for D2D coded caching that are to within a constant factor of one another when privacy of the users' demands must be guaranteed even in the presence of colluding users.


翻译:在最初由Maddah-Ali和Niesen设计的编码缓冲问题中,服务器通过无噪音共享的广播链接与拥有本地存储能力的多个用户进行通信。为使用户将其所需文件从编码多播传输中解码,所有用户的要求都必须为全球所知,这可能侵犯用户的隐私。为了解决这一隐私问题,Wan和Caire最近提出了若干方案,这些方案实现了编码化的多播增益,同时保障了用户需求的信息理论隐私。在设备到设计(D2D)网络中,需求隐私问题因每个用户也是发报机而进一步加剧,这似乎需要其余用户对所需文件的了解,以便形成编码多播送。本文展示了如何解决这一看似不可行的问题。本文的主要贡献是开发了新颖的、可实现的和反向的D2D编码缓存的界限,这些界限在用户需求的隐私必须保证时,即使是在colluding的用户在场的情况下,这些用户的隐私必须始终处于一个因素之内。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月27日
Arxiv
0+阅读 · 2022年6月25日
Arxiv
0+阅读 · 2022年6月22日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员