DeepAngle is a machine learning-based method to determine the contact angles of different phases in the tomography images of porous materials. Measurement of angles in 3--D needs to be done within the surface perpendicular to the angle planes, and it could become inaccurate when dealing with the discretized space of the image voxels. A computationally intensive solution is to correlate and vectorize all surfaces using an adaptable grid, and then measure the angles within the desired planes. On the contrary, the present study provides a rapid and low-cost technique powered by deep learning to estimate the interfacial angles directly from images. DeepAngle is tested on both synthetic and realistic images against the direct measurement technique and found to improve the r-squared by 5 to 16% while lowering the computational cost 20 times. This rapid method is especially applicable for processing large tomography data and time-resolved images, which is computationally intensive. The developed code and the dataset are available at an open repository on GitHub (https://www.github.com/ArashRabbani/DeepAngle).
翻译:深海环形是一种基于机器的学习方法,用以确定多孔材料成像图象中不同阶段的接触角度。 3- D 角度的测量需要在表面垂直与角度平面之间进行, 当处理图像氧化物的离散空间时可能会变得不准确。 计算密集的解决方案是使用可调整的网格将所有表面联系起来和向量化, 然后测量想要的平面内的角度。 相反, 本研究提供一种快速和低成本的技术,通过深层学习来直接从图像中估计间角度。 Deep Angle在合成和现实图像上都对照直接测量技术进行测试,并发现在将计算成本降低20倍的同时将正方位提高5%至16%。 这种快速的方法特别适用于处理大型的成像数据和时间溶解成图像,这是计算密集的。 在GitHub(https://www.github.com/ArashRabani/DepleAngle)的开放储存库中可以找到开发的代码和数据集(https://www. githb. com/ Arash- Anbani/DepAngleangle) 。