High-dimensional parabolic partial integro-differential equations (PIDEs) appear in many applications in insurance and finance. Existing numerical methods suffer from the curse of dimensionality or provide solutions only for a given space-time point. This gave rise to a growing literature on deep learning based methods for solving partial differential equations; results for integro-differential equations on the other hand are scarce. In this paper we consider an extension of the deep splitting scheme due to arXiv:1907.03452 and arXiv:2006.01496v3 to PIDEs. Our main contribution is an analysis of the approximation error which yields convergence rates in terms of the number of neurons for shallow neural networks. Moreover we discuss several test case studies to show the viability of our approach.
翻译:在保险和金融的许多应用中都出现了高维面抛物线部分分化方程式(PIDEs) 。现有数字方法受到维度诅咒,或只为某一时点提供解决办法。这导致关于基于深层次学习的解决部分分化方程式的方法的文献越来越多;另一方面,异质分化方程式的结果很少。在本文中,我们认为由于arXiv:1907.03452和arXiv:2006.01496v3而将深度分裂计划扩大到PIDEs。我们的主要贡献是对近似错误的分析,它得出浅神经网络神经元数目的趋同率。此外,我们讨论了若干试验案例研究,以显示我们的方法的可行性。