Bayesian approaches to clinical analyses for the purposes of patient phenotyping have been limited by the computational challenges associated with applying the Markov-Chain Monte-Carlo (MCMC) approach to large real-world data. Approximate Bayesian inference via optimization of the variational evidence lower bound, often called Variational Bayes (VB), has been successfully demonstrated for other applications. We investigate the performance and characteristics of currently available R and Python VB software for variational Bayesian Latent Class Analysis (LCA) of realistically large real-world observational data. We used a real-world data set, Optum\textsuperscript{TM} electronic health records (EHR), containing pediatric patients with risk indicators for type 2 diabetes mellitus that is a rare form in pediatric patients. The aim of this work is to validate a Bayesian patient phenotyping model for generality and extensibility and crucially that it can be applied to a realistically large real-world clinical data set. We find currently available automatic VB methods are very sensitive to initial starting conditions, model definition, algorithm hyperparameters and choice of gradient optimiser. The Bayesian LCA model was challenging to implement using VB but we achieved reasonable results with very good computational performance compared to MCMC.
翻译:临床分析问题中,贝叶斯方法在大规模实际世界数据上应用马尔科夫蒙特卡罗 (MCMC) 方法存在计算上的挑战。对运用变分证据下界进行近似贝叶斯推断,即称为变分贝叶斯 (VB),在其他案例中已经取得成功。我们探索了当前可用的 R 和 Python VB 软件在大规模真实世界观察数据的变分概率潜在类别分析 (LCA) 中的性能与特征。我们使用 Optum\textsuperscript{TM} 电子病历 (EHR) 的真实数据集,包含有二型糖尿病风险指标的儿科患者,这是儿科患者中罕见的形式。本文旨在验证患者表型建模贝叶斯方法的普遍性、可扩展性及其能否应用于大规模实际世界临床数据集。我们发现当前可用的自动 VB 方法对初始起始点、模型定义、算法超参数和梯度优化器的选择非常敏感。采用 VB 方法实现贝叶斯 LCA 模型具有挑战性,但相对于 MCMC 方法,我们在很好的计算性能下实现了合理的结果。