Removing geometrical details from a complex domain is a classical operation in computer aided design for simulation and manufacturing. This procedure simplifies the meshing process, and it enables faster simulations with less memory requirements. But depending on the partial differential equation that one wants to solve, removing some important geometrical features may greatly impact the solution accuracy. For instance, in solid mechanics simulations, such features can be holes or fillets near stress concentration regions. Unfortunately, the effect of geometrical simplification on the accuracy of the problem solution is often neglected, or its evaluation is based on engineering expertise only due to the lack of reliable tools. It is therefore important to have a better understanding of the effect of geometrical model simplification, also called defeaturing, to improve our control on the simulation accuracy along the design and analysis phase. In this work, we consider the Poisson equation as a model problem, we focus on isogeometric discretizations, and we build an adaptive strategy that is twofold. Firstly, it performs standard mesh refinement in a (potentially trimmed multipatch) defeatured geometry described via truncated hierarchical B-splines. Secondly, it is also able to perform geometrical refinement, that is, to choose at each iteration step which geometrical feature is important to obtain an accurate solution. To drive this adaptive strategy, we introduce an a posteriori estimator of the energy error between the exact solution defined in the exact fully-featured geometry, and the numerical approximation of the solution defined in the defeatured geometry. The reliability of the estimator is proven for very general geometric configurations, and numerical experiments are performed to validate the presented theory and to illustrate the capabilities of the proposed adaptive strategy.


翻译:从复杂域中删除几何细节是计算机辅助模拟和制造设计的一个典型操作。 这个程序简化了网状模拟过程, 并且能够以较少的内存要求更快地进行模拟。 但取决于人们想要解决的部分差分方程, 去除一些重要的几何特征可能会极大地影响解决方案的准确性。 例如, 在固态机械模拟中, 这些特征可能是在压力集中区附近出现的孔或填字。 不幸的是, 几何简化对于问题解决方案准确性的影响常常被忽视, 或者其评估仅仅基于工程专业知识, 这是因为缺乏可靠的工具。 因此, 有必要更好地了解几何模型简化的可靠性, 同时也需要打败, 以便改进我们想要解决的模拟准确性, 我们把皮奥森方程的公式视为一个模型问题, 我们专注于测量离异性的建议, 并且我们建立一个双倍的适应战略。 首先, 它在一个( 潜在三成的多相匹配的) 中进行标准的精度精度精度精度精度精度精度的精确度精确度精确度精确度的精确度的精确度的精确度的精确度, 其精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度, 将显示到精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度, 。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月13日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
10+阅读 · 2021年2月26日
Adaptive Synthetic Characters for Military Training
Arxiv
45+阅读 · 2021年1月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员