Network games have been instrumental in understanding strategic behaviors over networks for applications such as critical infrastructure networks, social networks, and cyber-physical systems. One critical challenge of network games is that the behaviors of the players are constrained by the underlying physical laws or safety rules, and the players may not have complete knowledge of network-wide constraints. To this end, this paper proposes a game framework to study constrained games on networks, where the players are locally aware of the constraints. We use \textit{awareness levels} to capture the scope of the network constraints that players are aware of. We first define and show the existence of generalized Nash equilibria (GNE) of the game, and point out that higher awareness levels of the players would lead to a larger set of GNE solutions. We use necessary and sufficient conditions to characterize the GNE, and propose the concept of the dual game to show that one can convert a locally-aware constrained game into a two-layer unconstrained game problem. We use linear quadratic games as case studies to corroborate the analytical results, and in particular, show the duality between Bertrand games and Cournot games.%, where each layer comprises an unconstrained game.


翻译:网络游戏有助于理解关键基础设施网络、社交网络和网络物理系统等应用网络的战略行为。网络游戏的一个关键挑战是,球员的行为受到基本物理法或安全规则的限制,球员可能无法完全了解整个网络的限制。为此,本文件提议了一个游戏框架来研究网络限制的游戏,让球员在当地了解这些限制。我们使用 kextit{ 认识水平} 来捕捉球员所了解的网络限制范围。我们首先定义并展示了游戏中普遍存在的Nash equiliria(GNE) 的存在,并指出,球员的认识水平的提高将导致一系列更大的GNE解决方案。我们使用必要和充分的条件来描述GNE的特点,并提出双重游戏的概念,以表明可以将当地觉悟限制的游戏转换成两层不受约束的游戏问题。我们用线性二次游戏作为案例研究,以证实分析结果,特别是显示Bertrand游戏和Courn游戏的双重性。我们使用一种不受约束的游戏。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月14日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员