Problem definition: Agents in online marketplaces (such as ridesharing and freelancing platforms) are often strategic, and heterogeneous in their compatibility with different types of jobs: fully flexible agents can fulfill any job, whereas specialized agents can only complete specific subsets of jobs. Convention wisdom suggests reserving agents that are more flexible whenever possible, however this may incentivize agents to pretend to be more specialized, leading to loss in matches. We focus on designing a practical matching policy that performs well in a strategic environment. Methodology/results: We model the allocation of jobs to agents as a matching queue, and analyze the equilibrium performance of various matching policies when agents are strategic and report their own types. We show that reserving flexibility naively can backfire, to the extent that the equilibrium throughput can be arbitrarily bad compared to a policy which simply dispatches jobs to agents at random. To balance matching efficiency with agents' strategic considerations, we propose a new policy dubbed flexibility reservation with fallback and show that it enjoys robust performance. Managerial implications: Our work highlights the importance of considering agent strategic behavior when designing matching policies in online platforms and service systems. The robust performance guarantee, along with the parameter-free nature of our proposed policy makes it easy to implement in practice. We illustrate how this policy is implemented in the driver destination product of major ridesharing platforms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月27日
Arxiv
0+阅读 · 2024年2月27日
Arxiv
10+阅读 · 2022年3月14日
Arxiv
112+阅读 · 2020年2月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年2月27日
Arxiv
0+阅读 · 2024年2月27日
Arxiv
10+阅读 · 2022年3月14日
Arxiv
112+阅读 · 2020年2月5日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员