Projected distributions have proved to be useful in the study of circular and directional data. Although any multivariate distribution can be used to produce a projected model, these distributions are typically parametric. In this article we consider a multivariate P\'olya tree on $R^k$ and project it to the unit hypersphere $S^k$ to define a new Bayesian nonparametric model for directional data. We study the properties of the proposed model and in particular, concentrate on the implied conditional distributions of some directions given the others to define a directional-directional regression model. We also define a multivariate linear regression model with P\'olya tree error and project it to define a linear-directional regression model. We obtain the posterior characterisation of all models and show their performance with simulated and real datasets.
翻译:预计分布已证明有助于研究圆形和方向数据。尽管可以使用任何多变量分布来生成预测模型,但这些分布通常是参数性。在本条中,我们考虑在$R ⁇ k$上使用多变量 P\'olya 树,并将其投射到单位超标准模型中,以定义新的Bayesian非参数性方向数据模型。我们研究了拟议模型的特性,特别是,侧重于某些方向的隐含条件性分布,给其他方向以条件性分布,以定义方向-方向回归模型。我们还用 P\'olya 树错误来定义多变量线性回归模型,并计划它定义线性-方向回归模型。我们获得了所有模型的外形特征,并以模拟和真实数据集显示其性能。