Language model fusion helps smart assistants recognize words which are rare in acoustic data but abundant in text-only corpora (typed search logs). However, such corpora have properties that hinder downstream performance, including being (1) too large, (2) beset with domain-mismatched content, and (3) heavy-headed rather than heavy-tailed (excessively many duplicate search queries such as "weather"). We show that three simple strategies for selecting language modeling data can dramatically improve rare-word recognition without harming overall performance. First, to address the heavy-headedness, we downsample the data according to a soft log function, which tunably reduces high frequency (head) sentences. Second, to encourage rare-word exposure, we explicitly filter for words rare in the acoustic data. Finally, we tackle domain-mismatch via perplexity-based contrastive selection, filtering for examples matched to the target domain. We down-select a large corpus of web search queries by a factor of 53x and achieve better LM perplexities than without down-selection. When shallow-fused with a state-of-the-art, production speech engine, our LM achieves WER reductions of up to 24% relative on rare-word sentences (without changing overall WER) compared to a baseline LM trained on the raw corpus. These gains are further validated through favorable side-by-side evaluations on live voice search traffic.


翻译:语言模型融合有助于智能助手识别在声学数据中罕见的词句,但只字搜索日志(类型搜索日志)丰富。然而,这类公司具有阻碍下游性能的特性,包括:(1) 过于庞大,(2) 受域片内容的困扰,(3) 重头而不是重尾(过多的重复搜索查询,如“天文”等) 。我们显示,选择语言模型数据的三个简单战略可以极大地改善稀有字识别,而不会损害总体性能。首先,为了解决高度偏执的问题,我们按照软日志功能对数据进行压缩,从而减少高频率(头)的句子。第二,为了鼓励稀字曝光,我们明确过滤声数据中稀少的词。最后,我们通过基于不易的对比选择,筛选与目标域相匹配的示例。我们下选了一大系列的网络搜索查询,以53x的系数为基础,实现了更好的LM,比不下选更好的LM 。当用浅色日志来鼓励进行现场搜索时,我们经过精练的原始语言搜索,通过WER 基本语言搜索引擎,这些搜索结果,在Wr-M AL-L

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员