Efficient unsupervised training and inference in deep generative models remains a challenging problem. One basic approach, called Helmholtz machine, involves training a top-down directed generative model together with a bottom-up auxiliary model used for approximate inference. Recent results indicate that better generative models can be obtained with better approximate inference procedures. Instead of improving the inference procedure, we here propose a new model which guarantees that the top-down and bottom-up distributions can efficiently invert each other. We achieve this by interpreting both the top-down and the bottom-up directed models as approximate inference distributions and by defining the model distribution to be the geometric mean of these two. We present a lower-bound for the likelihood of this model and we show that optimizing this bound regularizes the model so that the Bhattacharyya distance between the bottom-up and top-down approximate distributions is minimized. This approach results in state of the art generative models which prefer significantly deeper architectures while it allows for orders of magnitude more efficient approximate inference.


翻译:在深基因模型中,一个称为Helmholtz 机器的基本方法涉及培训自上而下定向基因模型和用于近似推理的自下而上辅助模型。最近的结果显示,较佳的基因模型可以通过更近似推理程序获得。我们在此提出一个新的模型,以保证自上而下和自下而上分布能够有效地相互反射。我们通过将自上而下和自下而上向上分布模型解释为近似推导分布,以及将模型分布确定为这两种模型的几何平均值,来实现这一目标。我们为这一模型的可能性提出了一个较低的范围,并且我们表明,优化这一约束性模型可以使自下而上和自上而下的近似分布之间的距离最小化。这一方法的结果是艺术基因模型的状态,这些模型更偏好于更深层次的结构,同时允许有更高效的推论。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
45+阅读 · 2019年12月20日
Phrase-Based & Neural Unsupervised Machine Translation
Doubly Attentive Transformer Machine Translation
Arxiv
4+阅读 · 2018年7月30日
Arxiv
6+阅读 · 2018年2月26日
Arxiv
5+阅读 · 2018年1月16日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
相关论文
Arxiv
45+阅读 · 2019年12月20日
Phrase-Based & Neural Unsupervised Machine Translation
Doubly Attentive Transformer Machine Translation
Arxiv
4+阅读 · 2018年7月30日
Arxiv
6+阅读 · 2018年2月26日
Arxiv
5+阅读 · 2018年1月16日
Arxiv
27+阅读 · 2017年12月6日
Top
微信扫码咨询专知VIP会员