Outliers in discrete choice response data may result from misclassification and misreporting of the response variable and from choice behaviour that is inconsistent with modelling assumptions (e.g. random utility maximisation). In the presence of outliers, standard discrete choice models produce biased estimates and suffer from compromised predictive accuracy. Robust statistical models are less sensitive to outliers than standard non-robust models. This paper analyses two robust alternatives to the multinomial probit (MNP) model. The two models are robit models whose kernel error distributions are heavy-tailed t-distributions to moderate the influence of outliers. The first model is the multinomial robit (MNR) model, in which a generic degrees of freedom parameter controls the heavy-tailedness of the kernel error distribution. The second model, the generalised multinomial robit (Gen-MNR) model, is more flexible than MNR, as it allows for distinct heavy-tailedness in each dimension of the kernel error distribution. For both models, we derive Gibbs samplers for posterior inference. In a simulation study, we illustrate the excellent finite sample properties of the proposed Bayes estimators and show that MNR and Gen-MNR produce more accurate estimates if the choice data contain outliers through the lens of the non-robust MNP model. In a case study on transport mode choice behaviour, MNR and Gen-MNR outperform MNP by substantial margins in terms of in-sample fit and out-of-sample predictive accuracy. The case study also highlights differences in elasticity estimates across models.
翻译:离散选择响应数据的外部值可能来自对响应变量的分类错误和误报,以及不符合模型假设的选择行为(例如随机效用最大化)。在存在外部值的情况下,标准的离散选择模型产生偏差估计,并受到不准确的预测。强效统计模型比标准的非紫外值模型对外部值不那么敏感。本文分析了多种名比模型的两种强效替代方法。两种模型是强效模型,其内核误差分布是重成型的双差差差分,以缓解外部值的影响。第一个模型是多点偏差模型,其中标准的离散选择模型产生偏差估计,并受到偏差预测。第二个模型是通用多点抢劫模型(Gen-MNR)模型,比MNR模型更灵活,因为它允许在内核分布的每个层面都有明显的超尾差。对于两种模型,我们为海边偏偏差的准确度模型,我们从多点选取(MNRR)模型中得出了不精确的精确度。在模拟的模型中,我们通过模拟研究,我们从模型中进行GIFIG样本样本中测测测测测测测测测测,并测测测测测了M结果。