A typical end-to-end task-oriented dialog system transfers context into dialog state, and upon which generates a response, which usually faces the problem of error propagation from both previously generated inaccurate dialog states and responses, especially in low-resource scenarios. To alleviate these issues, we propose BORT, a back and denoising reconstruction approach for end-to-end task-oriented dialog system. Squarely, to improve the accuracy of dialog states, back reconstruction is used to reconstruct the original input context from the generated dialog states since inaccurate dialog states cannot recover the corresponding input context. To enhance the denoising capability of the model to reduce the impact of error propagation, denoising reconstruction is used to reconstruct the corrupted dialog state and response. Extensive experiments conducted on MultiWOZ 2.0 and CamRest676 show the effectiveness of BORT. Furthermore, BORT demonstrates its advanced capabilities in the zero-shot domain and low-resource scenarios.
翻译:典型的端对端任务导向对话系统将背景转换为对话状态,并据此产生响应,通常会遇到以前产生的不准确对话状态和反应的错误传播问题,特别是在低资源情景下。为了缓解这些问题,我们提议对端对端任务导向对话体系采取背对面和分解的重建方法BORT,即对端对端任务导向对话体系采取后退和分解的重建方法。平心而论,为了提高对话状态的准确性,则利用后退重建从生成的对话框状态重建原始输入环境,因为不准确对话状态无法恢复相应的输入环境。为了提高模型的分层能力,以减少错误传播的影响,将利用拆分层重建来重建腐败对话状态和反应。对多WOZ2.0和CamRest676进行的广泛实验显示了BORT的有效性。此外,BORT展示了其在零射域和低资源情景下的先进能力。