Weighted Gaussian Curvature is an important measurement for images. However, its conventional computation scheme has low performance, low accuracy and requires that the input image must be second order differentiable. To tackle these three issues, we propose a novel discrete computation scheme for the weighted Gaussian curvature. Our scheme does not require the second order differentiability. Moreover, our scheme is more accurate, has smaller support region and computationally more efficient than the conventional schemes. Therefore, our scheme holds promise for a large range of applications where the weighted Gaussian curvature is needed, for example, image smoothing, cartoon texture decomposition, optical flow estimation, etc.
翻译:加权高斯曲线是图像的重要测量标准。 然而, 其常规计算方法的性能低, 精确度低, 并且要求输入图像必须是第二顺序的不同。 要解决这三个问题, 我们建议为加权高斯曲线制定新的独立计算方法。 我们的计划不需要第二顺序的不同性能。 此外, 我们的计划比常规计算方法更准确, 支持区域较小, 计算效率更高 。 因此, 我们的计划为大量应用带来了希望, 例如, 需要加权高斯曲线的图像平滑、 卡通纹理分解、 光学流量估计等 。