This paper introduces the $f$-EI$(\phi)$ algorithm, a novel iterative algorithm which operates on measures and performs $f$-divergence minimisation in a Bayesian framework. We prove that for a rich family of values of $(f,\phi)$ this algorithm leads at each step to a systematic decrease in the $f$-divergence and show that we achieve an optimum. In the particular case where we consider a weighted sum of Dirac measures and the $\alpha$-divergence, we obtain that the calculations involved in the $f$-EI$(\phi)$ algorithm simplify to gradient-based computations. Empirical results support the claim that the $f$-EI$(\phi)$ algorithm serves as a powerful tool to assist Variational methods.


翻译:本文介绍了美元-欧元(\phi)的算法,这是一种新型的迭代算法,在贝叶斯框架范围内以计量方式运作并进行美元-美元-美元(phi)的最小化。我们证明,对于一个价值为(f,\phi)美元的富裕家庭,这种算法每一步都会导致美元-美元(f,\phi)值的系统性下降,并表明我们取得了最佳效果。在特定情况下,我们认为Dirac措施的加权总和和和$/alpha美元/divence,我们得到的是,将美元-美元(hipe)的算法简化为基于梯度的计算所涉及的计算。 经验性结果支持了一项主张,即美元-美元(hipi)的算法是协助改变方法的有力工具。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Bridging Knowledge Graphs to Generate Scene Graphs
Arxiv
5+阅读 · 2020年1月7日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
8+阅读 · 2018年3月17日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员