This paper proposes teeth-photo, a new biometric modality for human authentication on mobile and hand held devices. Biometrics samples are acquired using the camera mounted on mobile device with the help of a mobile application having specific markers to register the teeth area. Region of interest (RoI) is then extracted using the markers and the obtained sample is enhanced using contrast limited adaptive histogram equalization (CLAHE) for better visual clarity. We propose a deep learning architecture and novel regularization scheme to obtain highly discriminative embedding for small size RoI. Proposed custom loss function was able to achieve perfect classification for the tiny RoI of $75\times 75$ size. The model is end-to-end and few-shot and therefore is very efficient in terms of time and energy requirements. The system can be used in many ways including device unlocking and secure authentication. To the best of our understanding, this is the first work on teeth-photo based authentication for mobile device. Experiments have been conducted on an in-house teeth-photo database collected using our application. The database is made publicly available. Results have shown that the proposed system has perfect accuracy.
翻译:本文提议使用使用牙齿光谱,这是在移动和手持装置上进行人类认证的一种新型生物鉴别模式; 使用安装在移动装置上的相机,在移动应用程序中配备了登记牙齿区域的专用标记,从而获得生物测定样品; 然后利用标记提取感兴趣的区域(RoI),然后利用标记进行提取,获得的样品则通过对比性有限的适应性直方图均匀化(CLAHE)来提高视觉清晰度而得到加强; 我们提出一个深层次的学习架构和新式规范化计划,以便为小号RoI获得高度歧视的嵌入。 提议的自定义损失功能能够实现75美元大小的小号RoI的完美分类。 该模型是端对端和几发,因此在时间和能源要求方面非常有效。 该系统可以在许多方面使用,包括解锁和安全认证装置。 据我们所知,这是基于对移动装置认证的牙齿光谱的首次工作。 实验是在使用我们的应用程序收集的内部牙齿光谱数据库上进行。 数据库是公开提供的。 研究结果表明,拟议的系统具有完美的准确性。