The increased use of text data in social science research has benefited from easy-to-access data (e.g., Twitter). That trend comes at the cost of research requiring sensitive but hard-to-share data (e.g., interview data, police reports, electronic health records). We introduce a solution to that stalemate with the open-source text anonymisation software_Textwash_. This paper presents the empirical evaluation of the tool using the TILD criteria: a technical evaluation (how accurate is the tool?), an information loss evaluation (how much information is lost in the anonymisation process?) and a de-anonymisation test (can humans identify individuals from anonymised text data?). The findings suggest that Textwash performs similar to state-of-the-art entity recognition models and introduces a negligible information loss of 0.84%. For the de-anonymisation test, we tasked humans to identify individuals by name from a dataset of crowdsourced person descriptions of very famous, semi-famous and non-existing individuals. The de-anonymisation rate ranged from 1.01-2.01% for the realistic use cases of the tool. We replicated the findings in a second study and concluded that Textwash succeeds in removing potentially sensitive information that renders detailed person descriptions practically anonymous.


翻译:在社会科学研究中更多地使用文本数据得益于易于获取的数据(例如推特);这一趋势是以需要敏感但难以分享的数据(例如访谈数据、警察报告、电子健康记录)的研究成本(例如访谈数据、警察报告、电子健康记录等)为代价的;我们采用开放源代码的匿名化软件_Textwash_为这一僵局引入了解决办法;本文介绍了使用TILD标准对工具的经验性评估:技术评估(工具的准确性如何?)、信息损失评估(在匿名化过程中丢失了多少信息?)和匿名化测试(人类能够从匿名化文本数据中识别个人吗?) 研究结果表明,文本洗与最新实体识别模式相似,并提出了可忽略的信息损失0.84%。在去除匿名化测试中,我们委托人类从众源个人对非常出名、半臭名化和无名化个人描述的数据集中找出个人的名字。在1.01-2的匿名化测试中,去除了匿名率从1.01-2的匿名化个人识别个人身份,从实际的敏感数据中去除了信息。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Dynamic Mixture of Experts Models for Online Prediction
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员