Model-based deep learning (MoDL) algorithms that rely on unrolling are emerging as powerful tools for image recovery. In this work, we introduce a novel monotone operator learning framework to overcome some of the challenges associated with current unrolled frameworks, including high memory cost, lack of guarantees on robustness to perturbations, and low interpretability. Unlike current unrolled architectures that use finite number of iterations, we use the deep equilibrium (DEQ) framework to iterate the algorithm to convergence and to evaluate the gradient of the convolutional neural network blocks using Jacobian iterations. This approach significantly reduces the memory demand, facilitating the extension of MoDL algorithms to high dimensional problems. We constrain the CNN to be a monotone operator, which allows us to introduce algorithms with guaranteed convergence properties and robustness guarantees. We demonstrate the utility of the proposed scheme in the context of parallel MRI.
翻译:依靠滚动的基于模型的深层次学习算法(MODL)正在成为恢复图像的有力工具。 在这项工作中,我们引入了一个全新的单调操作员学习框架,以克服与当前未滚动的框架相关的一些挑战,包括高记忆成本、缺乏对扰动稳健性的保障以及可解释性低。与目前使用有限迭代数的未滚动结构不同,我们利用深平衡框架将算法转换为趋同,并用雅各布相迭来评估卷发神经网络块的梯度。这一方法大大减少了记忆需求,便利了将MDL算法扩展至高维度问题。我们限制CNN成为一个单调操作员,从而使我们能够引入有保障汇合特性和稳健性保障的算法。我们展示了在平行的MRI背景下拟议办法的效用。